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ABSTRACT 

For sample sizes 4, 6, 8 and 12, Monte 
Carlo techniques are used to generate 2.000 
random samples (without replacement) from a 
"real" finite population which has two auxil- 
iary variables, xl and x2, and two charac- 
teristics, N1 and 2, to be estimated. 
The mean square errors mse) of the population 
total obtained by these methods are compared to 
those of the predictive sampling approach. The 
results indicate that the ratio estimator, under 
conventional unrestricted random sampling, yield 
mean square errors which are of the same order 
of magnitude (for each sample size) when xl 

and x2 are used as auxiliary variables; and 
are decreasing with increasing sample size. 
Similar results are not obtained under least - 
square prediction. Additionally, regardless 
of sample size, unrestricted random sampling 
is more efficient than the corresponding 
extreme sample except when information from 
x2 is used in the estimation of N2 . 

PURPOSIVE SAMPLING 

Recently, Royall [1] has presented a 
methodology, based on least- squares prediction, 
of sampling from finite populations. The 
precise sampling scheme is to choose those n 

units whose x- values are largest (hence an 
"extreme" or "purposive" sample) and, for this 

sample, estimate the population total, Y NY, 

by 

N = [syj+ßsx] 
where the first sum is over the sample units, 
the second sum is over the units not in the 
sample, 

= 
[S(xjyj/v(x3))/[s(xj2/v(xj))] 

and v(xj) is the variance of . 

When v(xj) a , is given by 

= 7/x 

and NY= N . 

Thus, in the precise situations for which 
the ratio estimator is optimal (see Cochran 
[2]), the classical ratio estimator and the 
estimator obtained from the predictive sampling 
approach are identical. 
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Note also that the "extreme" or "purposive" 
sample is one of the possible samples under 
unrestricted random sampling- -but it is pur- 
posely, not randomly, chosen. 

How does purposive sampling compare with 
unrestricted random sampling? On each of 16 
natural populations where there was one char- 
acteristic to be estimated, Royall [1] compared 
the mean square errors obtained under each of 
the sampling procedures. His results suggest 
that the predictive sampling scheme generally 
produced smaller mse's. 

It is our contention, however, that multi- 
purpose surveys (rather than unipurpose surveys) 
are the usual practice. Thus, the natural 
question to ask is: How will the predictive 
sampling approach compare with the classical 
unrestrictive random sampling procedures when 
there is more than one characteristic to be 
estimated? To answer this question, we utilized 
an existing natural population for which there 
were two quantities to be estimated and computed 
the rose's under each of the sampling plans for 
each characteristic. 

THE POPULATION 

In a survey conducted in late 1973 (Lynch 
[3]), we had gathered information from the 
residents of King and Pierce Counties in the 
State of Washington. The information on all 350 
sample units (N = 350) included: (a) the number 
of persons in each sample unit (x1), (b) the 
number of households in each sample unit (x2), 

(c) the number of females (18 years and older) 
who had ever had a pap smear (y1), and (d) the 

number of females, 18 years and older, who had 
had a recent, 1972 or 1973, pap smear (y2). 

CHARACTERISTICS OF THE POPULATION 

TABLE 1: Popuea ion Rangea, 
Sttandand Deviation!. and 

Vag 

Variables 

xl X2 
y2 

Mean 9.9 3.6 3.0 2.4 
Range 25 8 8 7 

St. Dev. 5.2 1.1 1.4 1.3 
Coeff. of Var. 0.53 0.31 0.46 0.55 

C C = 0.09, C = 0.20 
xl x2 y1y2 



The population means, standard deviations, 
ranges and coefficients of variation are pre- 
sented in Table 1. Here, it is evident that 
the coefficients of variation range from about 
0.1 to approximately 0.55 and that the coef- 
ficients of variation of xl, yl and y2 are 

approximately equal, while that of x2 is less. 

TABLE 2: 

Variables x1 
x2 y2 

xl 1 0.58 0.65 0.54 
x2 0.58 1 0.75 0.61 

0.65 0.75 1 0.78 
y2 0.54 0.61 0.78 1 

From Table 2 which presents the correlation 
coefficients, it is evident that all correla- 
tions are greater than 0.5. Also, scattergram 
plots of the data (not shown, in the interest of 
brevity) revealed that the intercepts were small. 
Thus, we have the conditions under which the 
ratio estimator is useful. 

METHODS 

Because of issues of bias and variability 
in small samples, it was decided to cover a range 
of small sample sizes --that is, n 4, 6, 8 and 
12. Due to limitations on available computer 
time and financial resources, it was immediately 
apparent that not all NCn samples could be 
generated. Since the computer program, written 
by Dr. Kronmal [4] and later modified by the 
author, generated the NCn samples in a random 
order, it was decided that a selection of 2,000 
random samples for each sample size would pro- 
vide the desired precision. 

For the purposive sampling scheme, we use 
the n largest units of xl (Extreme -x1) to 

compute the mse's for Nil and N2 . This 

procedure was repeated for the n largest 
units of x2 . 

RESULTS 

The results shown in Table 3 indicate that, 
when information from either_ xl or x2 is 

used in the estimation of N1 (see first four 

rows of Table 1), the purposive sampling plan 
yields larger mse's at all sample sizes. When 
xl was used in the estimation of N12, the 

univariate ratio estimator yielded the smallest 
mse's at all sample sizes; the reverse was true 
when x2 was employed. 
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TABLE 3: Compalcibon Mean Square 
Recut Son and the 
Un te Ratio 
a Survey 

Estimator 
Mean Square Error, 

n= 4 n= 6 n= 8 n= 12 

Ratio -xl 60874 37811 27560 16314 
Extreme -x1 104431 106697 94080 122769 

Ratio -x2 35664 17285 12249 8096 
Extreme -x2 31813 27360 19268 10266 

Mean Square Error, NY2 

Ratio -xl 57087 36039 27435 15681 
Extreme -x1 134260 121250 94638 101025 

Ratio -x2 35410 23068 16706 10635 
Extreme -x2 11519 7302 2288 3382 

The classical univariate ratio estimator 
yields mse's which are of the same order of 
magnitude in the estimation of N1, and then 
N2 . Similar results were not always obtained 
under the purposive sampling scheme (see 
Extreme -x2). 

Thirdly, under unrestricted random 
sampling, the ratio estimator yields mse's 
which are decreasing with increasing sample 
size. This does not appear to be evident under . 

the purposive sampling plan. 

CONCLUSIONS 

Of course, one should be cautious about 
drawing general conclusions from the results 
of a single population. However, on the basis 
of estimating two characteristics from this 
population, the results would seem to suggest 
that the unrestricted random sampling plan has 
some desirable properties which are not evident 
under the purposive sampling scheme. 
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